Tactile discrimination of gaps by slowly adapting afferents: effects of population parameters and anisotropy in the fingerpad.
نویسندگان
چکیده
The aim of this study was to determine the acuity of the peripheral tactile system for gaps and to determine how stimulus orientation may impact on this. We quantified the ability of humans to discriminate small differences in gap width using a forced-choice task. Stimuli were presented passively to the distal fingerpad in a region where the skin ridges all run approximately in the same direction. Two standard gap widths were used (2 and 2.9 mm), and the comparison gap widths were larger than the standard gaps. With the gap axis parallel to the skin ridges, the average difference limen was approximately 0.2 mm for both standards. We examined the effect of stimulus orientation by asking subjects to discriminate between a smooth surface and a grating (ridge width, 1.5 mm; groove width, 0. 75 mm). They were able to discriminate the two surfaces when the axis of the grooves was parallel to the skin ridges, but performance was below threshold in the orthogonal orientation. The underlying neural mechanisms were investigated using the gap stimuli to activate single slowly adapting type I mechanoreceptive afferents (SAIs) innervating the fingerpads of anesthetized monkeys. The edges of the gap produced response peaks, and the gap resulted in a trough in the receptive field profiles. The response magnitude at the peaks was greater, and at the troughs was smaller, for larger gap widths and also when the axis of the gap was parallel to the skin ridges as compared with the orthogonal orientation. Simulated SAI population responses showed that response profiles were distorted by variation in afferent sensitivity and by neural noise. Using signal detection theory, based on a neural measure of the gaps computed over the active population, the acuity of the SAIs under realistic population conditions was compared with human performance. These analyses showed how parameters like afferent sensitivity, the pattern and density of innervation, and noise impact on performance and why their impact is different for the two stimulus orientations investigated. The greatest limitation was imposed by noise that is independent of response magnitude, and this effect was greater for stimuli oriented orthogonal to the skin ridges than for the parallel orientation.
منابع مشابه
Effects of nonuniform fiber sensitivity, innervation geometry, and noise on information relayed by a population of slowly adapting type I primary afferents from the fingerpad.
The capacity of a population of primary afferent fibers to signal information about a sphere indenting the fingerpad is limited by factors such as the inhomogeneity of sensitivity among the afferents, the pattern and density of innervation, and the effects of noise (response variability). Using experimental data recorded from single slowly adapting type I afferents (SAIs), we simulated the resp...
متن کاملDecoding tactile afferent activity to obtain an estimate of instantaneous force and torque applied to the fingerpad.
Dexterous manipulation is not possible without sensory information about object properties and manipulative forces. Fundamental neuroscience has been unable to demonstrate how information about multiple stimulus parameters may be continuously extracted, concurrently, from a population of tactile afferents. This is the first study to demonstrate this, using spike trains recorded from tactile aff...
متن کاملSlowly adapting type I afferents from the sides and end of the finger respond to stimuli on the center of the fingerpad.
The central part of the fingerpad in anesthetized monkeys was stimulated by spheres varying in curvature indented into the skin. Responses were recorded from single slowly adapting type I primary afferent fibers (SAIs) innervating the sides and end of the distal segment of the stimulated finger. Although these afferents had receptive field centers that were remote from the stimulus, their respo...
متن کاملRepresentation of curved surfaces in responses of mechanoreceptive afferent fibers innervating the monkey's fingerpad.
The aim was to elucidate how the population of digital nerve afferents signals information about the shape of objects in contact with the fingerpads during fine manipulations. Responses were recorded from single mechanoreceptive afferent fibers in median nerves of anesthetized monkeys. Seven spherical surfaces were used, varying from a highly curved surface (radius, 1.44 mm; curvature, 694 m-1)...
متن کاملSinusoidal movement of a grating across the monkey's fingerpad: representation of grating and movement features in afferent fiber responses.
Gratings of alternating grooves and ridges were moved sinusoidally back and forth across the monkey's fingerpad. Each grating was completely specified by its spatial period and the movement by its peak speed: together these determined the peak temporal frequency at which grating ridges passed over the skin. Responses of cutaneous, mechanoreceptive afferents innervating the fingerpad were charac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 84 3 شماره
صفحات -
تاریخ انتشار 2000